Best AI Agents for Python Developers: Complete 2025 Guide
From Django to FastAPI, data science to automation, here are the must-have AI agents every Python developer should install.
Best AI Agents for Python Developers: Complete 2025 Guide
Python developers have unique needs - from web frameworks to data science, automation to AI/ML. Here are the best AI agents tailored for Python workflows.
Why Python Needs Custom Agents
Python is versatile, which means generic AI often gets it wrong:
- Suggests Django when you need FastAPI
- Uses pandas when NumPy is better
- Ignores PEP 8 and type hints
- Misses Python 3.12+ features
Custom agents solve this.
Best Agents by Use Case
1. Web Development
Django Expert
Enforces Django best practices, ORM optimization, and security.
What it does:
- Uses class-based views correctly
- Implements proper middleware
- Follows Django project structure
- Adds security hardening (CSRF, XSS protection)
Install from: AgentDepot Django collection
FastAPI Pro
Modern async Python API development.
What it does:
- Uses proper type hints and Pydantic models
- Implements async/await correctly
- Adds proper error handling
- Includes OpenAPI documentation
2. Data Science & ML
Pandas Performance Optimizer
Writes efficient pandas code that doesn't kill your RAM.
What it does:
- Uses vectorized operations instead of loops
- Suggests appropriate dtypes
- Implements chunking for large datasets
- Avoids common anti-patterns
NumPy Expert
Scientific computing with proper NumPy usage.
What it does:
- Uses broadcasting correctly
- Suggests efficient array operations
- Implements proper indexing
- Avoids copying when slicing
Scikit-learn Guide
Machine learning with best practices.
What it does:
- Proper train/test splits
- Pipeline usage
- Hyperparameter tuning patterns
- Model evaluation metrics
3. Code Quality
PEP 8 Enforcer
Ensures your Python follows official style guidelines.
What it does:
- Enforces proper naming conventions
- Manages imports correctly
- Sets appropriate line lengths
- Uses f-strings over .format()
Example rule:
Always follow PEP 8:
- snake_case for functions/variables
- PascalCase for classes
- UPPER_CASE for constants
- 4-space indentation
- Max 88 characters per line (Black standard)
Type Hint Master
Adds proper type hints (Python 3.10+ syntax).
What it does:
- Uses modern type syntax (
list[str]notList[str]) - Adds return type hints
- Uses TypedDict for structured dicts
- Implements proper Optional/Union usage
# What this agent generates:
def process_users(
users: list[dict[str, str | int]],
active_only: bool = False
) -> list[str]:
"""Process user data and return names."""
return [u["name"] for u in users if not active_only or u.get("active")]
4. Testing
Pytest Pro
Write comprehensive tests automatically.
What it does:
- Creates fixtures properly
- Uses parametrize for multiple test cases
- Implements proper mocking
- Adds docstrings to tests
# AI-generated test with this agent:
import pytest
from myapp.services import UserService
@pytest.fixture
def user_service():
"""Fixture for UserService with mocked database."""
return UserService(db=MockDatabase())
@pytest.mark.parametrize("username,expected", [
("john", True),
("", False),
("x" * 100, False),
])
def test_validate_username(user_service, username, expected):
"""Test username validation with various inputs."""
assert user_service.validate(username) == expected
5. Async Python
Asyncio Expert
Proper async/await patterns.
What it does:
- Uses asyncio correctly
- Avoids blocking the event loop
- Implements proper error handling in async code
- Uses async context managers
Example pattern:
async def fetch_data(session: aiohttp.ClientSession, url: str) -> dict:
"""Fetch data from URL with proper error handling."""
try:
async with session.get(url) as response:
response.raise_for_status()
return await response.json()
except aiohttp.ClientError as e:
logger.error(f"Failed to fetch {url}: {e}")
raise
6. DevOps & Automation
Python CLI Builder
Create professional CLI tools with argparse/Click/Typer.
What it does:
- Proper argument parsing
- Help text generation
- Error handling
- Progress bars for long operations
Docker Python Expert
Containerize Python apps correctly.
What it does:
- Multi-stage builds
- Proper base images (slim, alpine)
- Security best practices
- Caching optimization
# AI-generated Dockerfile with this agent:
FROM python:3.12-slim as builder
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
FROM python:3.12-slim
WORKDIR /app
COPY --from=builder /usr/local/lib/python3.12/site-packages /usr/local/lib/python3.12/site-packages
COPY . .
RUN useradd -m appuser && chown -R appuser:appuser /app
USER appuser
CMD ["python", "main.py"]
Installing Python Agents
For Cursor
- Browse AgentDepot's Python collection
- Copy the rule you want
- Create
.cursorrulesin your project root - Paste the rule
- Start coding!
For Claude Code
# Install MCP server for Python tools
npx @anthropic-ai/mcp install python-tools
# Configure in settings
Combining Multiple Agents
Example .cursorrules for a Django project:
You are an expert Python developer specializing in Django.
Language & Style:
- Python 3.12+
- Type hints everywhere
- Follow PEP 8 (Black formatting, 88 char lines)
- Use f-strings, not .format()
Django Specifics:
- Use class-based views (not function views)
- Implement proper permissions and authentication
- Follow Django project structure
- Use Django ORM efficiently (select_related, prefetch_related)
- Add security middleware
Testing:
- Write tests with pytest-django
- Use fixtures for test data
- Test happy path and edge cases
- Aim for 80%+ coverage
Never:
- Use `any` type
- Skip type hints
- Write code without tests
- Ignore security (CSRF, SQL injection, XSS)
Python-Specific Tips
Tip 1: Specify Python Version
Use Python 3.12 features including:
- PEP 695 type parameter syntax
- PEP 701 f-string improvements
- Enhanced error messages
Tip 2: Mention Your Stack
Tech stack:
- Django 5.0
- PostgreSQL
- Redis for caching
- Celery for async tasks
- pytest for testing
Tip 3: Define Performance Goals
Optimize for:
- Database queries (minimize N+1)
- Memory usage (use generators for large datasets)
- Response time (< 200ms for API endpoints)
Common Python Pitfalls (That Agents Fix)
❌ Mutable Default Arguments
# Bad (AI without agents might do this)
def append_to(element, list=[]):
list.append(element)
return list
# Good (Python agent fixes this)
def append_to(element, list=None):
if list is None:
list = []
list.append(element)
return list
❌ Late Binding Closures
# Bad
functions = [lambda: i for i in range(3)]
# Good (agent knows this pattern)
functions = [lambda i=i: i for i in range(3)]
❌ Inefficient String Concatenation
# Bad
result = ""
for item in items:
result += str(item)
# Good
result = "".join(str(item) for item in items)
Conclusion
Python AI agents transform how you code:
- ✅ Enforce best practices automatically
- ✅ Avoid common pitfalls
- ✅ Write tests alongside code
- ✅ Maintain consistent style
- ✅ Ship production-ready code faster
Start with 2-3 agents that match your current project, then explore more.